bitcoin/release-process.md at master · bitcoin/bitcoin ...

Groestlcoin 6th Anniversary Release

Introduction

Dear Groestlers, it goes without saying that 2020 has been a difficult time for millions of people worldwide. The groestlcoin team would like to take this opportunity to wish everyone our best to everyone coping with the direct and indirect effects of COVID-19. Let it bring out the best in us all and show that collectively, we can conquer anything.
The centralised banks and our national governments are facing unprecedented times with interest rates worldwide dropping to record lows in places. Rest assured that this can only strengthen the fundamentals of all decentralised cryptocurrencies and the vision that was seeded with Satoshi's Bitcoin whitepaper over 10 years ago. Despite everything that has been thrown at us this year, the show must go on and the team will still progress and advance to continue the momentum that we have developed over the past 6 years.
In addition to this, we'd like to remind you all that this is Groestlcoin's 6th Birthday release! In terms of price there have been some crazy highs and lows over the years (with highs of around $2.60 and lows of $0.000077!), but in terms of value– Groestlcoin just keeps getting more valuable! In these uncertain times, one thing remains clear – Groestlcoin will keep going and keep innovating regardless. On with what has been worked on and completed over the past few months.

UPDATED - Groestlcoin Core 2.18.2

This is a major release of Groestlcoin Core with many protocol level improvements and code optimizations, featuring the technical equivalent of Bitcoin v0.18.2 but with Groestlcoin-specific patches. On a general level, most of what is new is a new 'Groestlcoin-wallet' tool which is now distributed alongside Groestlcoin Core's other executables.
NOTE: The 'Account' API has been removed from this version which was typically used in some tip bots. Please ensure you check the release notes from 2.17.2 for details on replacing this functionality.

How to Upgrade?

Windows
If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes for older versions), then run the installer.
OSX
If you are running an older version, shut it down. Wait until it has completely shut down (which might take a few minutes for older versions), run the dmg and drag Groestlcoin Core to Applications.
Ubuntu
http://groestlcoin.org/forum/index.php?topic=441.0

Other Linux

http://groestlcoin.org/forum/index.php?topic=97.0

Download

Download the Windows Installer (64 bit) here
Download the Windows Installer (32 bit) here
Download the Windows binaries (64 bit) here
Download the Windows binaries (32 bit) here
Download the OSX Installer here
Download the OSX binaries here
Download the Linux binaries (64 bit) here
Download the Linux binaries (32 bit) here
Download the ARM Linux binaries (64 bit) here
Download the ARM Linux binaries (32 bit) here

Source

ALL NEW - Groestlcoin Moonshine iOS/Android Wallet

Built with React Native, Moonshine utilizes Electrum-GRS's JSON-RPC methods to interact with the Groestlcoin network.
GRS Moonshine's intended use is as a hot wallet. Meaning, your keys are only as safe as the device you install this wallet on. As with any hot wallet, please ensure that you keep only a small, responsible amount of Groestlcoin on it at any given time.

Features

Download

iOS
Android

Source

ALL NEW! – HODL GRS Android Wallet

HODL GRS connects directly to the Groestlcoin network using SPV mode and doesn't rely on servers that can be hacked or disabled.
HODL GRS utilizes AES hardware encryption, app sandboxing, and the latest security features to protect users from malware, browser security holes, and even physical theft. Private keys are stored only in the secure enclave of the user's phone, inaccessible to anyone other than the user.
Simplicity and ease-of-use is the core design principle of HODL GRS. A simple recovery phrase (which we call a Backup Recovery Key) is all that is needed to restore the user's wallet if they ever lose or replace their device. HODL GRS is deterministic, which means the user's balance and transaction history can be recovered just from the backup recovery key.

Features

Download

Main Release (Main Net)
Testnet Release

Source

ALL NEW! – GroestlcoinSeed Savior

Groestlcoin Seed Savior is a tool for recovering BIP39 seed phrases.
This tool is meant to help users with recovering a slightly incorrect Groestlcoin mnemonic phrase (AKA backup or seed). You can enter an existing BIP39 mnemonic and get derived addresses in various formats.
To find out if one of the suggested addresses is the right one, you can click on the suggested address to check the address' transaction history on a block explorer.

Features

Live Version (Not Recommended)

https://www.groestlcoin.org/recovery/

Download

https://github.com/Groestlcoin/mnemonic-recovery/archive/master.zip

Source

ALL NEW! – Vanity Search Vanity Address Generator

NOTE: NVidia GPU or any CPU only. AMD graphics cards will not work with this address generator.
VanitySearch is a command-line Segwit-capable vanity Groestlcoin address generator. Add unique flair when you tell people to send Groestlcoin. Alternatively, VanitySearch can be used to generate random addresses offline.
If you're tired of the random, cryptic addresses generated by regular groestlcoin clients, then VanitySearch is the right choice for you to create a more personalized address.
VanitySearch is a groestlcoin address prefix finder. If you want to generate safe private keys, use the -s option to enter your passphrase which will be used for generating a base key as for BIP38 standard (VanitySearch.exe -s "My PassPhrase" FXPref). You can also use VanitySearch.exe -ps "My PassPhrase" which will add a crypto secure seed to your passphrase.
VanitySearch may not compute a good grid size for your GPU, so try different values using -g option in order to get the best performances. If you want to use GPUs and CPUs together, you may have best performances by keeping one CPU core for handling GPU(s)/CPU exchanges (use -t option to set the number of CPU threads).

Features

Usage

https://github.com/Groestlcoin/VanitySearch#usage

Download

Source

ALL NEW! – Groestlcoin EasyVanity 2020

Groestlcoin EasyVanity 2020 is a windows app built from the ground-up and makes it easier than ever before to create your very own bespoke bech32 address(es) when whilst not connected to the internet.
If you're tired of the random, cryptic bech32 addresses generated by regular Groestlcoin clients, then Groestlcoin EasyVanity2020 is the right choice for you to create a more personalised bech32 address. This 2020 version uses the new VanitySearch to generate not only legacy addresses (F prefix) but also Bech32 addresses (grs1 prefix).

Features

Download

Source

Remastered! – Groestlcoin WPF Desktop Wallet (v2.19.0.18)

Groestlcoin WPF is an alternative full node client with optional lightweight 'thin-client' mode based on WPF. Windows Presentation Foundation (WPF) is one of Microsoft's latest approaches to a GUI framework, used with the .NET framework. Its main advantages over the original Groestlcoin client include support for exporting blockchain.dat and including a lite wallet mode.
This wallet was previously deprecated but has been brought back to life with modern standards.

Features

Remastered Improvements

Download

Source

ALL NEW! – BIP39 Key Tool

Groestlcoin BIP39 Key Tool is a GUI interface for generating Groestlcoin public and private keys. It is a standalone tool which can be used offline.

Features

Download

Windows
Linux :
 pip3 install -r requirements.txt python3 bip39\_gui.py 

Source

ALL NEW! – Electrum Personal Server

Groestlcoin Electrum Personal Server aims to make using Electrum Groestlcoin wallet more secure and more private. It makes it easy to connect your Electrum-GRS wallet to your own full node.
It is an implementation of the Electrum-grs server protocol which fulfils the specific need of using the Electrum-grs wallet backed by a full node, but without the heavyweight server backend, for a single user. It allows the user to benefit from all Groestlcoin Core's resource-saving features like pruning, blocks only and disabled txindex. All Electrum-GRS's feature-richness like hardware wallet integration, multi-signature wallets, offline signing, seed recovery phrases, coin control and so on can still be used, but connected only to the user's own full node.
Full node wallets are important in Groestlcoin because they are a big part of what makes the system be trust-less. No longer do people have to trust a financial institution like a bank or PayPal, they can run software on their own computers. If Groestlcoin is digital gold, then a full node wallet is your own personal goldsmith who checks for you that received payments are genuine.
Full node wallets are also important for privacy. Using Electrum-GRS under default configuration requires it to send (hashes of) all your Groestlcoin addresses to some server. That server can then easily spy on your transactions. Full node wallets like Groestlcoin Electrum Personal Server would download the entire blockchain and scan it for the user's own addresses, and therefore don't reveal to anyone else which Groestlcoin addresses they are interested in.
Groestlcoin Electrum Personal Server can also broadcast transactions through Tor which improves privacy by resisting traffic analysis for broadcasted transactions which can link the IP address of the user to the transaction. If enabled this would happen transparently whenever the user simply clicks "Send" on a transaction in Electrum-grs wallet.
Note: Currently Groestlcoin Electrum Personal Server can only accept one connection at a time.

Features

Download

Windows
Linux / OSX (Instructions)

Source

UPDATED – Android Wallet 7.38.1 - Main Net + Test Net

The app allows you to send and receive Groestlcoin on your device using QR codes and URI links.
When using this app, please back up your wallet and email them to yourself! This will save your wallet in a password protected file. Then your coins can be retrieved even if you lose your phone.

Changes

Download

Main Net
Main Net (FDroid)
Test Net

Source

UPDATED – Groestlcoin Sentinel 3.5.06 (Android)

Groestlcoin Sentinel is a great solution for anyone who wants the convenience and utility of a hot wallet for receiving payments directly into their cold storage (or hardware wallets).
Sentinel accepts XPUB's, YPUB'S, ZPUB's and individual Groestlcoin address. Once added you will be able to view balances, view transactions, and (in the case of XPUB's, YPUB's and ZPUB's) deterministically generate addresses for that wallet.
Groestlcoin Sentinel is a fork of Groestlcoin Samourai Wallet with all spending and transaction building code removed.

Changes

Download

Source

UPDATED – P2Pool Test Net

Changes

Download

Pre-Hosted Testnet P2Pool is available via http://testp2pool.groestlcoin.org:21330/static/

Source

submitted by Yokomoko_Saleen to groestlcoin [link] [comments]

Which type of curren(t) do you want to see(cy)? A analysis of the intention behind bitcoin(s). [Part 2]

Part 1
It's been a bit of time since the first post during which I believe things have crystallised further as to the intentions of the three primary bitcoin variants. I was going to go on a long winded journey to try to weave together the various bits and pieces to let the reader discern from themselves but there's simply too much material that needs to be covered and the effort that it would require is not something that I can invest right now.
Firstly we must define what bitcoin actually is. Many people think of bitcoin as a unit of a digital currency like a dollar in your bank but without a physical substrate. That's kind of correct as a way to explain its likeness to something many people are familiar with but instead it's a bit more nuanced than that. If we look at a wallet from 2011 that has never moved any coins, we can find that there are now multiple "bitcoins" on multiple different blockchains. This post will discuss the main three variants which are Bitcoin Core, Bitcoin Cash and Bitcoin SV. In this respect many people are still hotly debating which is the REAL bitcoin variant and which bitcoins you want to be "investing" in.
The genius of bitcoin was not in defining a class of non physical objects to send around. Why bitcoin was so revolutionary is that it combined cryptography, economics, law, computer science, networking, mathematics, etc. and created a protocol which was basically a rule set to be followed which creates a game of incentives that provides security to a p2p network to prevent double spends. The game theory is extremely important to understand. When a transaction is made on the bitcoin network your wallet essentially generates a string of characters which includes your public cryptographic key, a signature which is derived from the private key:pub key pair, the hash of the previous block and an address derived from a public key of the person you want to send the coins to. Because each transaction includes the hash of the previous block (a hash is something that will always generate the same 64 character string result from EXACTLY the same data inputs) the blocks are literally chained together. Bitcoin and the blockchain are thus defined in the technical white paper which accompanied the release client as a chain of digital signatures.
The miners validate transactions on the network and compete with one another to detect double spends on the network. If a miner finds the correct solution to the current block (and in doing so is the one who writes all the transactions that have elapsed since the last block was found, in to the next block) says that a transaction is confirmed but then the rest of the network disagree that the transactions occurred in the order that this miner says (for double spends), then the network will reject the version of the blockchain that that miner is working on. In that respect the miners are incentivised to check each other's work and ensure the majority are working on the correct version of the chain. The miners are thus bound by the game theoretical design of NAKAMOTO CONSENSUS and the ENFORCES of the rule set. It is important to note the term ENFORCER rather than RULE CREATOR as this is defined in the white paper which is a document copyrighted by Satoshi Nakamoto in 2009.

Now if we look at the three primary variants of bitcoin understanding these important defining characteristics of what the bitcoin protocol actually is we can make an argument that the variants that changed some of these defining attributes as no longer being bitcoin rather than trying to argue based off market appraisal which is essentially defining bitcoin as a social media consensus rather than a set in stone rule set.
BITCOIN CORE: On first examination Bitcoin Core appears to be the incumbent bitcoin that many are being lead to believe is the "true" bitcoin and the others are knock off scams. The outward stated rationale behind the bitcoin core variant is that computational resources, bandwidth, storage are scarce and that before increasing the size of each block to allow for more transactions we should be increasing the efficiency with which the data being fed in to a block is stored. In order to achieve this one of the first suggested implementations was a process known as SegWit (segregating the witness data). This means that when you construct a bitcoin transaction, in the header of the tx, instead of the inputs being public key and a signature + Hash + address(to), the signature data is moved outside of header as this can save space within the header and allow more transactions to fill the block. More of the history of the proposal can be read about here (bearing in mind that article is published by the bitcoinmagazine which is founded by ethereum devs Vitalik and Mihai and can't necessarily be trusted to give an unbiased record of events). The idea of a segwit like solution was proposed as early as 2012 by the likes of Greg Maxwell and Luke Dash Jnr and Peter Todd in an apparent effort to "FIX" transaction malleability and enable side chains. Those familiar with the motto "problem reaction solution" may understand here that the problem being presented may not always be an authentic problem and it may actually just be necessary preparation for implementing a desired solution.
The real technical arguments as to whether moving signature data outside of the transaction in the header actually invalidates the definition of bitcoin as being a chain of digital signatures is outside my realm of expertise but instead we can examine the character of the individuals and groups involved in endorsing such a solution. Greg Maxwell is a hard to know individual that has been involved with bitcoin since its very early days but in some articles he portrays himself as portrays himself as one of bitcoins harshest earliest critics. Before that he worked with Mozilla and Wikipedia and a few mentions of him can be found on some old linux sites or such. He has no entry on wikipedia other than a non hyperlinked listing as the CTO of Blockstream. Blockstream was a company founded by Greg Maxwell and Adam Back, but in business registration documents only Adam Back is listed as the business contact but registered by James Murdock as the agent. They received funding from a number of VC firms but also Joi Ito and Reid Hoffman and there are suggestions that MIT media labs and the Digital Currency Initiative. For those paying attention Joi Ito and Reid Hoffman have links to Jeffrey Epstein and his offsider Ghislaine Maxwell.

Ghislaine is the daughter of publishing tycoon and fraudster Robert Maxwell (Ján Ludvík Hyman Binyamin Hoch, a yiddish orthodox czech). It is emerging that the Maxwells are implicated with Mossad and involved in many different psyops throughout the last decades. Greg Maxwell is verified as nullc but a few months ago was outed using sock puppets as another reddit user contrarian__ who also admits to being Jewish in one of his comments as the former. Greg has had a colourful history with his roll as a bitcoin core developer successfully ousting two of the developers put there by Satoshi (Gavin Andreson and Mike Hearn) and being referred to by Andreson as a toxic troll with counterpart Samon Mow. At this point rather than crafting the narrative around Greg, I will provide a few links for the reader to assess on their own time:
  1. https://coinspice.io/news/btc-dev-gregory-maxwell-fake-social-media-account-accusations-nonsense/
  2. https://www.trustnodes.com/2017/06/06/making-gregory-maxwell-bitcoin-core-committer-huge-mistake-says-gavin-andresen
  3. https://www.ccn.com/gavin-andresen-samson-mow-and-greg-maxwell-toxic-trolls//
  4. https://www.nytimes.com/2016/01/17/business/dealbook/the-bitcoin-believer-who-gave-up.html
  5. https://www.coindesk.com/mozilla-accepting-bitcoin-donations
  6. https://spectrum.ieee.org/tech-talk/computing/networks/the-bitcoin-for-is-a-coup
  7. https://www.reddit.com/btc/comments/68pusp/gavin_andresen_on_twitter_im_looking_for_beta/dh1cmfl/
  8. https://www.reddit.com/btc/comments/d14qee/can_someone_post_the_details_of_the_relationships/?ref=tokendaily
  9. https://www.coindesk.com/court-docs-detail-sexual-misconduct-allegations-against-bitcoin-consultant-peter-todd
  10. https://coinspice.io/news/billionaire-jeffrey-epstein-btc-maximalist-bitcoin-is-a-store-of-value-not-a-currency/
  11. https://www.dailymail.co.uk/news/article-7579851/More-300-paedophiles-arrested-worldwide-massive-child-abuse-website-taken-down.html
  12. https://news.bitcoin.com/risks-segregated-witness-opening-door-mining-cartels-undermine-bitcoin-network/
  13. https://micky.com.au/craig-wrights-crackpot-bitcoin-theory-covered-by-uks-financial-times/
  14. https://www.reddit.com/btc/comments/74se80/wikipedia_admins_gregory_maxwell_of_blockstream/

Now I could just go on dumping more and more articles but that doesn't really weave it all together. Essentially it is very well possible that the 'FIX' of bitcoin proposed with SegWit was done by those who are moral reprobates who have been rubbing shoulders money launderers and human traffickers. Gregory Maxwell was removed from wikipedia, worked with Mozilla who donated a quarter of a million to MIT media labs and had relationship with Joi Ito, the company he founded received funding from people associated with Epstein who have demonstrated their poor character and dishonesty and attempted to wage toxic wars against those early bitcoin developers who wished to scale bitcoin as per the white paper and without changing consensus rules or signature structures.
The argument that BTC is bitcoin because the exchanges and the market have chosen is not necessarily a logical supposition when the vast majority of the money that has flown in to inflate the price of BTC comes from a cryptographic USD token that was created by Brock Pierce (Might Ducks child stahollywood pedo scandal Digital Entertainment Network) who attended Jeffrey Epstein's Island for conferences. The group Tether who issues the USDT has been getting nailed by the New York Attorney General office with claims of $1.4 trillion in damages from their dodgey practices. Brock Pierce has since distanced himself from Tether but Blockstream still works closely with them and they are now exploring issuing tether on the ethereum network. Tether lost it's US banking partner in early 2017 before the monstrous run up for bitcoin prices. Afterwards they alleged they had full reserves of USD however, they were never audited and were printing hundreds of millions of dollars of tether each week during peak mania which was used to buy bitcoin (which was then used as collateral to issue more tether against the bitcoin they bought at a value they inflated). Around $30m in USDT is crossing between China to Russia daily and when some of the groups also related to USDT/Tether were raided they found them in possession of hundreds of thousands of dollars worth of counterfeit physical US bills.
Because of all this it then becomes important to reassess the arguments that were made for the implementation of pegged sidechains, segregated witnesses and other second layer solutions. If preventing the bitcoin blockchain from bloating was the main argument for second layer solutions, what was the plan for scaling the data related to the records of transactions that occur on the second layer. You will then need to rely on less robust ways of securing the second layer than Proof Of Work but still have the same amount of data to contend with, unless there was plans all along for second layer solutions to enable records to be deleted /pruned to facilitate money laundering and violation of laws put in place to prevent banking secrecy etc.
There's much more to it as well and I encourage anyone interested to go digging on their own in to this murky cesspit. Although I know very well what sort of stuff Epstein has been up to I have been out of the loop and haven't familiarised myself with everyone involved in his network that is coming to light.
Stay tuned for part 3 which will be an analysis of the shit show that is the Bitcoin Cash variant...
submitted by whipnil to C_S_T [link] [comments]

Transcript of the community Q&A with Steve Shadders and Daniel Connolly of the Bitcoin SV development team. We talk about the path to big blocks, new opcodes, selfish mining, malleability, and why November will lead to a divergence in consensus rules. (Cont in comments)

We've gone through the painstaking process of transcribing the linked interview with Steve Shadders and Daniell Connolly of the Bitcoin SV team. There is an amazing amount of information in this interview that we feel is important for businesses and miners to hear, so we believe it was important to get this is a written form. To avoid any bias, the transcript is taken almost word for word from the video, with just a few changes made for easier reading. If you see any corrections that need to be made, please let us know.
Each question is in bold, and each question and response is timestamped accordingly. You can follow along with the video here:
https://youtu.be/tPImTXFb_U8

BEGIN TRANSCRIPT:

Connor: 02:19.68,0:02:45.10
Alright so thank You Daniel and Steve for joining us. We're joined by Steve Shadders and Daniel Connolly from nChain and also the lead developers of the Satoshi’s Vision client. So Daniel and Steve do you guys just want to introduce yourselves before we kind of get started here - who are you guys and how did you get started?
Steve: 0,0:02:38.83,0:03:30.61
So I'm Steve Shadders and at nChain I am the director of solutions in engineering and specifically for Bitcoin SV I am the technical director of the project which means that I'm a bit less hands-on than Daniel but I handle a lot of the liaison with the miners - that's the conditional project.
Daniel:
Hi I’m Daniel I’m the lead developer for Bitcoin SV. As the team's grown that means that I do less actual coding myself but more organizing the team and organizing what we’re working on.
Connor 03:23.07,0:04:15.98
Great so we took some questions - we asked on Reddit to have people come and post their questions. We tried to take as many of those as we could and eliminate some of the duplicates, so we're gonna kind of go through each question one by one. We added some questions of our own in and we'll try and get through most of these if we can. So I think we just wanted to start out and ask, you know, Bitcoin Cash is a little bit over a year old now. Bitcoin itself is ten years old but in the past a little over a year now what has the process been like for you guys working with the multiple development teams and, you know, why is it important that the Satoshi’s vision client exists today?
Steve: 0:04:17.66,0:06:03.46
I mean yes well we’ve been in touch with the developer teams for quite some time - I think a bi-weekly meeting of Bitcoin Cash developers across all implementations started around November last year. I myself joined those in January or February of this year and Daniel a few months later. So we communicate with all of those teams and I think, you know, it's not been without its challenges. It's well known that there's a lot of disagreements around it, but some what I do look forward to in the near future is a day when the consensus issues themselves are all rather settled, and if we get to that point then there's not going to be much reason for the different developer teams to disagree on stuff. They might disagree on non-consensus related stuff but that's not the end of the world because, you know, Bitcoin Unlimited is free to go and implement whatever they want in the back end of a Bitcoin Unlimited and Bitcoin SV is free to do whatever they want in the backend, and if they interoperate on a non-consensus level great. If they don't not such a big problem there will obviously be bridges between the two, so, yeah I think going forward the complications of having so many personalities with wildly different ideas are going to get less and less.
Cory: 0:06:00.59,0:06:19.59
I guess moving forward now another question about the testnet - a lot of people on Reddit have been asking what the testing process for Bitcoin SV has been like, and if you guys plan on releasing any of those results from the testing?
Daniel: 0:06:19.59,0:07:55.55
Sure yeah so our release will be concentrated on the stability, right, with the first release of Bitcoin SV and that involved doing a large amount of additional testing particularly not so much at the unit test level but at the more system test so setting up test networks, performing tests, and making sure that the software behaved as we expected, right. Confirming the changes we made, making sure that there aren’t any other side effects. Because of, you know, it was quite a rush to release the first version so we've got our test results documented, but not in a way that we can really release them. We're thinking about doing that but we’re not there yet.
Steve: 0:07:50.25,0:09:50.87
Just to tidy that up - we've spent a lot of our time developing really robust test processes and the reporting is something that we can read on our internal systems easily, but we need to tidy that up to give it out for public release. The priority for us was making sure that the software was safe to use. We've established a test framework that involves a progression of code changes through multiple test environments - I think it's five different test environments before it gets the QA stamp of approval - and as for the question about the testnet, yeah, we've got four of them. We've got Testnet One and Testnet Two. A slightly different numbering scheme to the testnet three that everyone's probably used to – that’s just how we reference them internally. They're [1 and 2] both forks of Testnet Three. [Testnet] One we used for activation testing, so we would test things before and after activation - that one’s set to reset every couple of days. The other one [Testnet Two] was set to post activation so that we can test all of the consensus changes. The third one was a performance test network which I think most people have probably have heard us refer to before as Gigablock Testnet. I get my tongue tied every time I try to say that word so I've started calling it the Performance test network and I think we're planning on having two of those: one that we can just do our own stuff with and experiment without having to worry about external unknown factors going on and having other people joining it and doing stuff that we don't know about that affects our ability to baseline performance tests, but the other one (which I think might still be a work in progress so Daniel might be able to answer that one) is one of them where basically everyone will be able to join and they can try and mess stuff up as bad as they want.
Daniel: 0:09:45.02,0:10:20.93
Yeah, so we so we recently shared the details of Testnet One and Two with the with the other BCH developer groups. The Gigablock test network we've shared up with one group so far but yeah we're building it as Steve pointed out to be publicly accessible.
Connor: 0:10:18.88,0:10:44.00
I think that was my next question I saw that you posted on Twitter about the revived Gigablock testnet initiative and so it looked like blocks bigger than 32 megabytes were being mined and propagated there, but maybe the block explorers themselves were coming down - what does that revived Gigablock test initiative look like?
Daniel: 0:10:41.62,0:11:58.34
That's what did the Gigablock test network is. So the Gigablock test network was first set up by Bitcoin Unlimited with nChain’s help and they did some great work on that, and we wanted to revive it. So we wanted to bring it back and do some large-scale testing on it. It's a flexible network - at one point we had we had eight different large nodes spread across the globe, sort of mirroring the old one. Right now we scaled back because we're not using it at the moment so they'll notice I think three. We have produced some large blocks there and it's helped us a lot in our research and into the scaling capabilities of Bitcoin SV, so it's guided the work that the team’s been doing for the last month or two on the improvements that we need for scalability.
Steve: 0:11:56.48,0:13:34.25
I think that's actually a good point to kind of frame where our priorities have been in kind of two separate stages. I think, as Daniel mentioned before, because of the time constraints we kept the change set for the October 15 release as minimal as possible - it was just the consensus changes. We didn't do any work on performance at all and we put all our focus and energy into establishing the QA process and making sure that that change was safe and that was a good process for us to go through. It highlighted what we were missing in our team – we got our recruiters very busy recruiting of a Test Manager and more QA people. The second stage after that is performance related work which, as Daniel mentioned, the results of our performance testing fed into what tasks we were gonna start working on for the performance related stuff. Now that work is still in progress - some of the items that we identified the code is done and that's going through the QA process but it’s not quite there yet. That's basically the two-stage process that we've been through so far. We have a roadmap that goes further into the future that outlines more stuff, but primarily it’s been QA first, performance second. The performance enhancements are close and on the horizon but some of that work should be ongoing for quite some time.
Daniel: 0:13:37.49,0:14:35.14
Some of the changes we need for the performance are really quite large and really get down into the base level view of the software. There's kind of two groups of them mainly. One that are internal to the software – to Bitcoin SV itself - improving the way it works inside. And then there's other ones that interface it with the outside world. One of those in particular we're working closely with another group to make a compatible change - it's not consensus changing or anything like that - but having the same interface on multiple different implementations will be very helpful right, so we're working closely with them to make improvements for scalability.
Connor: 0:14:32.60,0:15:26.45
Obviously for Bitcoin SV one of the main things that you guys wanted to do that that some of the other developer groups weren't willing to do right now is to increase the maximum default block size to 128 megabytes. I kind of wanted to pick your brains a little bit about - a lot of the objection to either removing the box size entirely or increasing it on a larger scale is this idea of like the infinite block attack right and that kind of came through in a lot of the questions. What are your thoughts on the “infinite block attack” and is it is it something that that really exists, is it something that miners themselves should be more proactive on preventing, or I guess what are your thoughts on that attack that everyone says will happen if you uncap the block size?
Steve: 0:15:23.45,0:18:28.56
I'm often quoted on Twitter and Reddit - I've said before the infinite block attack is bullshit. Now, that's a statement that I suppose is easy to take out of context, but I think the 128 MB limit is something where there’s probably two schools of thought about. There are some people who think that you shouldn't increase the limit to 128 MB until the software can handle it, and there are others who think that it's fine to do it now so that the limit is increased when the software can handle it and you don’t run into the limit when this when the software improves and can handle it. Obviously we’re from the latter school of thought. As I said before we've got a bunch of performance increases, performance enhancements, in the pipeline. If we wait till May to increase the block size limit to 128 MB then those performance enhancements will go in, but we won't be able to actually demonstrate it on mainnet. As for the infinitive block attack itself, I mean there are a number of mitigations that you can put in place. I mean firstly, you know, going down to a bit of the tech detail - when you send a block message or send any peer to peer message there's a header which has the size of the message. If someone says they're sending you a 30MB message and you're receiving it and it gets to 33MB then obviously you know something's wrong so you can drop the connection. If someone sends you a message that's 129 MB and you know the block size limit is 128 you know it’s kind of pointless to download that message. So I mean these are just some of the mitigations that you can put in place. When I say the attack is bullshit, I mean I mean it is bullshit from the sense that it's really quite trivial to prevent it from happening. I think there is a bit of a school of thought in the Bitcoin world that if it's not in the software right now then it kind of doesn't exist. I disagree with that, because there are small changes that can be made to work around problems like this. One other aspect of the infinite block attack, and let’s not call it the infinite block attack, let's just call it the large block attack - it takes a lot of time to validate that we gotten around by having parallel pipelines for blocks to come in, so you've got a block that's coming in it's got a unknown stuck on it for two hours or whatever downloading and validating it. At some point another block is going to get mined b someone else and as long as those two blocks aren't stuck in a serial pipeline then you know the problem kind of goes away.
Cory: 0:18:26.55,0:18:48.27
Are there any concerns with the propagation of those larger blocks? Because there's a lot of questions around you know what the practical size of scaling right now Bitcoin SV could do and the concerns around propagating those blocks across the whole network.
Steve 0:18:45.84,0:21:37.73
Yes, there have been concerns raised about it. I think what people forget is that compact blocks and xThin exist, so if a 32MB block is not send 32MB of data in most cases, almost all cases. The concern here that I think I do find legitimate is the Great Firewall of China. Very early on in Bitcoin SV we started talking with miners on the other side of the firewall and that was one of their primary concerns. We had anecdotal reports of people who were having trouble getting a stable connection any faster than 200 kilobits per second and even with compact blocks you still need to get the transactions across the firewall. So we've done a lot of research into that - we tested our own links across the firewall, rather CoinGeeks links across the firewall as they’ve given us access to some of their servers so that we can play around, and we were able to get sustained rates of 50 to 90 megabits per second which pushes that problem quite a long way down the road into the future. I don't know the maths off the top of my head, but the size of the blocks that can sustain is pretty large. So we're looking at a couple of options - it may well be the chattiness of the peer-to-peer protocol causes some of these issues with the Great Firewall, so we have someone building a bridge concept/tool where you basically just have one kind of TX vacuum on either side of the firewall that collects them all up and sends them off every one or two seconds as a single big chunk to eliminate some of that chattiness. The other is we're looking at building a multiplexer that will sit and send stuff up to the peer-to-peer network on one side and send it over splitters, to send it over multiple links, reassemble it on the other side so we can sort of transition the great Firewall without too much trouble, but I mean getting back to the core of your question - yes there is a theoretical limit to block size propagation time and that's kind of where Moore's Law comes in. Putting faster links and you kick that can further down the road and you just keep on putting in faster links. I don't think 128 main blocks are going to be an issue though with the speed of the internet that we have nowadays.
Connor: 0:21:34.99,0:22:17.84
One of the other changes that you guys are introducing is increasing the max script size so I think right now it’s going from 201 to 500 [opcodes]. So I guess a few of the questions we got was I guess #1 like why not uncap it entirely - I think you guys said you ran into some concerns while testing that - and then #2 also specifically we had a question about how certain are you that there are no remaining n squared bugs or vulnerabilities left in script execution?
Steve: 0:22:15.50,0:25:36.79
It's interesting the decision - we were initially planning on removing that cap altogether and the next cap that comes into play after that (next effective cap is a 10,000 byte limit on the size of the script). We took a more conservative route and decided to wind that back to 500 - it's interesting that we got some criticism for that when the primary criticism I think that was leveled against us was it’s dangerous to increase that limit to unlimited. We did that because we’re being conservative. We did some research into these log n squared bugs, sorry – attacks, that people have referred to. We identified a few of them and we had a hard think about it and thought - look if we can find this many in a short time we can fix them all (the whack-a-mole approach) but it does suggest that there may well be more unknown ones. So we thought about putting, you know, taking the whack-a-mole approach, but that doesn't really give us any certainty. We will fix all of those individually but a more global approach is to make sure that if anyone does discover one of these scripts it doesn't bring the node to a screaming halt, so the problem here is because the Bitcoin node is essentially single-threaded, if you get one of these scripts that locks up the script engine for a long time everything that's behind it in the queue has to stop and wait. So what we wanted to do, and this is something we've got an engineer actively working on right now, is once that script validation goad path is properly paralyzed (parts of it already are), then we’ll basically assign a few threads for well-known transaction templates, and a few threads for any any type of script. So if you get a few scripts that are nasty and lock up a thread for a while that's not going to stop the node from working because you've got these other kind of lanes of the highway that are exclusively reserved for well-known script templates and they'll just keep on passing through. Once you've got that in place, and I think we're in a much better position to get rid of that limit entirely because the worst that's going to happen is your non-standard script pipelines get clogged up but everything else will keep keep ticking along - there are other mitigations for this as well I mean I know you could always put a time limit on script execution if they wanted to, and that would be something that would be up to individual miners. Bitcoin SV's job I think is to provide the tools for the miners and the miners can then choose, you know, how to make use of them - if they want to set time limits on script execution then that's a choice for them.
Daniel: 0:25:34.82,0:26:15.85
Yeah, I'd like to point out that a node here, when it receives a transaction through the peer to peer network, it doesn't have to accept that transaction, you can reject it. If it looks suspicious to the node it can just say you know we're not going to deal with that, or if it takes more than five minutes to execute, or more than a minute even, it can just abort and discard that transaction, right. The only time we can’t do that is when it's in a block already, but then it could decide to reject the block as well. It's all possibilities there could be in the software.
Steve: 0:26:13.08,0:26:20.64
Yeah, and if it's in a block already it means someone else was able to validate it so…
Cory: 0,0:26:21.21,0:26:43.60
There’s a lot of discussions about the re-enabled opcodes coming – OP_MUL, OP_INVERT, OP_LSHIFT, and OP_RSHIFT up invert op l shift and op r shift you maybe explain the significance of those op codes being re-enabled?
Steve: 0:26:42.01,0:28:17.01
Well I mean one of one of the most significant things is other than two, which are minor variants of DUP and MUL, they represent almost the complete set of original op codes. I think that's not necessarily a technical issue, but it's an important milestone. MUL is one that's that I've heard some interesting comments about. People ask me why are you putting OP_MUL back in if you're planning on changing them to big number operations instead of the 32-bit limit that they're currently imposed upon. The simple answer to that question is that we currently have all of the other arithmetic operations except for OP_MUL. We’ve got add divide, subtract, modulo – it’s odd to have a script system that's got all the mathematical primitives except for multiplication. The other answer to that question is that they're useful - we've talked about a Rabin signature solution that basically replicates the function of DATASIGVERIFY. That's just one example of a use case for this - most cryptographic primitive operations require mathematical operations and bit shifts are useful for a whole ton of things. So it's really just about completing that work and completing the script engine, or rather not completing it, but putting it back the way that it was it was meant to be.
Connor 0:28:20.42,0:29:22.62
Big Num vs 32 Bit. I've seen Daniel - I think I saw you answer this on Reddit a little while ago, but the new op codes using logical shifts and Satoshi’s version use arithmetic shifts - the general question that I think a lot of people keep bringing up is, maybe in a rhetorical way but they say why not restore it back to the way Satoshi had it exactly - what are the benefits of changing it now to operate a little bit differently?
Daniel: 0:29:18.75,0:31:12.15
Yeah there's two parts there - the big number one and the L shift being a logical shift instead of arithmetic. so when we re-enabled these opcodes we've looked at them carefully and have adjusted them slightly as we did in the past with OP_SPLIT. So the new LSHIFT and RSHIFT are bitwise operators. They can be used to implement arithmetic based shifts - I think I've posted a short script that did that, but we can't do it the other way around, right. You couldn't use an arithmetic shift operator to implement a bitwise one. It's because of the ordering of the bytes in the arithmetic values, so the values that represent numbers. The little endian which means they're swapped around to what many other systems - what I've considered normal - or big-endian. And if you start shifting that properly as a number then then shifting sequence in the bytes is a bit strange, so it couldn't go the other way around - you couldn't implement bitwise shift with arithmetic, so we chose to make them bitwise operators - that's what we proposed.
Steve: 0:31:10.57,0:31:51.51
That was essentially a decision that was actually made in May, or rather a consequence of decisions that were made in May. So in May we reintroduced OP_AND, OP_OR, and OP_XOR, and that was also another decision to replace three different string operators with OP_SPLIT was also made. So that was not a decision that we've made unilaterally, it was a decision that was made collectively with all of the BCH developers - well not all of them were actually in all of the meetings, but they were all invited.
Daniel: 0:31:48.24,0:32:23.13
Another example of that is that we originally proposed OP_2DIV and OP_2MUL was it, I think, and this is a single operator that multiplies the value by two, right, but it was pointed out that that can very easily be achieved by just doing multiply by two instead of having a separate operator for it, so we scrapped those, we took them back out, because we wanted to keep the number of operators minimum yeah.
Steve: 0:32:17.59,0:33:47.20
There was an appetite around for keeping the operators minimal. I mean the decision about the idea to replace OP_SUBSTR, OP_LEFT, OP_RIGHT with OP_SPLIT operator actually came from Gavin Andresen. He made a brief appearance in the Telegram workgroups while we were working out what to do with May opcodes and obviously Gavin's word kind of carries a lot of weight and we listen to him. But because we had chosen to implement the May opcodes (the bitwise opcodes) and treat the data as big-endian data streams (well, sorry big-endian not really applicable just plain data strings) it would have been completely inconsistent to implement LSHIFT and RSHIFT as integer operators because then you would have had a set of bitwise operators that operated on two different kinds of data, which would have just been nonsensical and very difficult for anyone to work with, so yeah. I mean it's a bit like P2SH - it wasn't a part of the original Satoshi protocol that once some things are done they're done and you know if you want to want to make forward progress you've got to work within that that framework that exists.
Daniel: 0:33:45.85,0:34:48.97
When we get to the big number ones then it gets really complicated, you know, number implementations because then you can't change the behavior of the existing opcodes, and I don't mean OP_MUL, I mean the other ones that have been there for a while. You can't suddenly make them big number ones without seriously looking at what scripts there might be out there and the impact of that change on those existing scripts, right. The other the other point is you don't know what scripts are out there because of P2SH - there could be scripts that you don't know the content of and you don't know what effect changing the behavior of these operators would mean. The big number thing is tricky, so another option might be, yeah, I don't know what the options for though it needs some serious thought.
Steve: 0:34:43.27,0:35:24.23
That’s something we've reached out to the other implementation teams about - actually really would like their input on the best ways to go about restoring big number operations. It has to be done extremely carefully and I don't know if we'll get there by May next year, or when, but we’re certainly willing to put a lot of resources into it and we're more than happy to work with BU or XT or whoever wants to work with us on getting that done and getting it done safely.
Connor: 0:35:19.30,0:35:57.49
Kind of along this similar vein, you know, Bitcoin Core introduced this concept of standard scripts, right - standard and non-standard scripts. I had pretty interesting conversation with Clemens Ley about use cases for “non-standard scripts” as they're called. I know at least one developer on Bitcoin ABC is very hesitant, or kind of pushed back on him about doing that and so what are your thoughts about non-standard scripts and the entirety of like an IsStandard check?
Steve: 0:35:58.31,0:37:35.73
I’d actually like to repurpose the concept. I think I mentioned before multi-threaded script validation and having some dedicated well-known script templates - when you say the word well-known script template there’s already a check in Bitcoin that kind of tells you if it's well-known or not and that's IsStandard. I'm generally in favor of getting rid of the notion of standard transactions, but it's actually a decision for miners, and it's really more of a behavioral change than it is a technical change. There's a whole bunch of configuration options that miners can set that affect what they do what they consider to be standard and not standard, but the reality is not too many miners are using those configuration options. So I mean standard transactions as a concept is meaningful to an arbitrary degree I suppose, but yeah I would like to make it easier for people to get non-standard scripts into Bitcoin so that they can experiment, and from discussions of I’ve had with CoinGeek they’re quite keen on making their miners accept, you know, at least initially a wider variety of transactions eventually.
Daniel: 0:37:32.85,0:38:07.95
So I think IsStandard will remain important within the implementation itself for efficiency purposes, right - you want to streamline base use case of cash payments through them and prioritizing. That's where it will remain important but on the interfaces from the node to the rest of the network, yeah I could easily see it being removed.
Cory: 0,0:38:06.24,0:38:35.46
*Connor mentioned that there's some people that disagree with Bitcoin SV and what they're doing - a lot of questions around, you know, why November? Why implement these changes in November - they think that maybe the six-month delay might not cause a split. Well, first off what do you think about the ideas of a potential split and I guess what is the urgency for November?
Steve: 0:38:33.30,0:40:42.42
Well in November there's going to be a divergence of consensus rules regardless of whether we implement these new op codes or not. Bitcoin ABC released their spec for the November Hard fork change I think on August 16th or 17th something like that and their client as well and it included CTOR and it included DSV. Now for the miners that commissioned the SV project, CTOR and DSV are controversial changes and once they're in they're in. They can't be reversed - I mean CTOR maybe you could reverse it at a later date, but DSV once someone's put a P2SH transaction into the project or even a non P2SH transaction in the blockchain using that opcode it's irreversible. So it's interesting that some people refer to the Bitcoin SV project as causing a split - we're not proposing to do anything that anyone disagrees with - there might be some contention about changing the opcode limit but what we're doing, I mean Bitcoin ABC already published their spec for May and it is our spec for the new opcodes, so in terms of urgency - should we wait? Well the fact is that we can't - come November you know it's bit like Segwit - once Segwit was in, yes you arguably could get it out by spending everyone's anyone can spend transactions but in reality it's never going to be that easy and it's going to cause a lot of economic disruption, so yeah that's it. We're putting out changes in because it's not gonna make a difference either way in terms of whether there's going to be a divergence of consensus rules - there's going to be a divergence whether whatever our changes are. Our changes are not controversial at all.
Daniel: 0:40:39.79,0:41:03.08
If we didn't include these changes in the November upgrade we'd be pushing ahead with a no-change, right, but the November upgrade is there so we should use it while we can. Adding these non-controversial changes to it.
Connor: 0:41:01.55,0:41:35.61
Can you talk about DATASIGVERIFY? What are your concerns with it? The general concept that's been kind of floated around because of Ryan Charles is the idea that it's a subsidy, right - that it takes a whole megabyte and kind of crunches that down and the computation time stays the same but maybe the cost is lesser - do you kind of share his view on that or what are your concerns with it?
Daniel: 0:41:34.01,0:43:38.41
Can I say one or two things about this – there’s different ways to look at that, right. I'm an engineer - my specialization is software, so the economics of it I hear different opinions. I trust some more than others but I am NOT an economist. I kind of agree with the ones with my limited expertise on that it's a subsidy it looks very much like it to me, but yeah that's not my area. What I can talk about is the software - so adding DSV adds really quite a lot of complexity to the code right, and it's a big change to add that. And what are we going to do - every time someone comes up with an idea we’re going to add a new opcode? How many opcodes are we going to add? I saw reports that Jihan was talking about hundreds of opcodes or something like that and it's like how big is this client going to become - how big is this node - is it going to have to handle every kind of weird opcode that that's out there? The software is just going to get unmanageable and DSV - that was my main consideration at the beginning was the, you know, if you can implement it in script you should do it, because that way it keeps the node software simple, it keeps it stable, and you know it's easier to test that it works properly and correctly. It's almost like adding (?) code from a microprocessor you know why would you do that if you can if you can implement it already in the script that is there.
Steve: 0:43:36.16,0:46:09.71
It’s actually an interesting inconsistency because when we were talking about adding the opcodes in May, the philosophy that seemed to drive the decisions that we were able to form a consensus around was to simplify and keep the opcodes as minimal as possible (ie where you could replicate a function by using a couple of primitive opcodes in combination, that was preferable to adding a new opcode that replaced) OP_SUBSTR is an interesting example - it's a combination of SPLIT, and SWAP and DROP opcodes to achieve it. So at really primitive script level we've got this philosophy of let's keep it minimal and at this sort of (?) philosophy it’s all let's just add a new opcode for every primitive function and Daniel's right - it's a question of opening the floodgates. Where does it end? If we're just going to go down this road, it almost opens up the argument why have a scripting language at all? Why not just add a hard code all of these functions in one at a time? You know, pay to public key hash is a well-known construct (?) and not bother executing a script at all but once we've done that we take away with all of the flexibility for people to innovate, so it's a philosophical difference, I think, but I think it's one where the position of keeping it simple does make sense. All of the primitives are there to do what people need to do. The things that people don't feel like they can't do are because of the limits that exist. If we had no opcode limit at all, if you could make a gigabyte transaction so a gigabyte script, then you can do any kind of crypto that you wanted even with 32-bit integer operations, Once you get rid of the 32-bit limit of course, a lot of those a lot of those scripts come up a lot smaller, so a Rabin signature script shrinks from 100MB to a couple hundred bytes.
Daniel: 0:46:06.77,0:47:36.65
I lost a good six months of my life diving into script, right. Once you start getting into the language and what it can do, it is really pretty impressive how much you can achieve within script. Bitcoin was designed, was released originally, with script. I mean it didn't have to be – it could just be instead of having a transaction with script you could have accounts and you could say trust, you know, so many BTC from this public key to this one - but that's not the way it was done. It was done using script, and script provides so many capabilities if you start exploring it properly. If you start really digging into what it can do, yeah, it's really amazing what you can do with script. I'm really looking forward to seeing some some very interesting applications from that. I mean it was Awemany his zero-conf script was really interesting, right. I mean it relies on DSV which is a problem (and some other things that I don't like about it), but him diving in and using script to solve this problem was really cool, it was really good to see that.
Steve: 0:47:32.78,0:48:16.44
I asked a question to a couple of people in our research team that have been working on the Rabin signature stuff this morning actually and I wasn't sure where they are up to with this, but they're actually working on a proof of concept (which I believe is pretty close to done) which is a Rabin signature script - it will use smaller signatures so that it can fit within the current limits, but it will be, you know, effectively the same algorithm (as DSV) so I can't give you an exact date on when that will happen, but it looks like we'll have a Rabin signature in the blockchain soon (a mini-Rabin signature).
Cory: 0:48:13.61,0:48:57.63
Based on your responses I think I kinda already know the answer to this question, but there's a lot of questions about ending experimentation on Bitcoin. I was gonna kind of turn that into – with the plan that Bitcoin SV is on do you guys see like a potential one final release, you know that there's gonna be no new opcodes ever released (like maybe five years down the road we just solidify the base protocol and move forward with that) or are you guys more on the idea of being open-ended with appropriate testing that we can introduce new opcodes under appropriate testing.
Steve: 0:48:55.80,0:49:47.43
I think you've got a factor in what I said before about the philosophical differences. I think new functionality can be introduced just fine. Having said that - yes there is a place for new opcodes but it's probably a limited place and in my opinion the cryptographic primitive functions for example CHECKSIG uses ECDSA with a specific elliptic curve, hash 256 uses SHA256 - at some point in the future those are going to no longer be as secure as we would like them to be and we'll replace them with different hash functions, verification functions, at some point, but I think that's a long way down the track.
Daniel: 0:49:42.47,0:50:30.3
I'd like to see more data too. I'd like to see evidence that these things are needed, and the way I could imagine that happening is that, you know, that with the full scripting language some solution is implemented and we discover that this is really useful, and over a period of, like, you know measured in years not days, we find a lot of transactions are using this feature, then maybe, you know, maybe we should look at introducing an opcode to optimize it, but optimizing before we even know if it's going to be useful, yeah, that's the wrong approach.
Steve: 0:50:28.19,0:51:45.29
I think that optimization is actually going to become an economic decision for the miners. From the miner’s point of view is if it'll make more sense for them to be able to optimize a particular process - does it reduce costs for them such that they can offer a better service to everyone else? Yeah, so ultimately these decisions are going to be miner’s main decisions, not developer decisions. Developers of course can offer their input - I wouldn't expect every miner to be an expert on script, but as we're already seeing miners are actually starting to employ their own developers. I’m not just talking about us - there are other miners in China that I know have got some really bright people on their staff that question and challenge all of the changes - study them and produce their own reports. We've been lucky with actually being able to talk to some of those people and have some really fascinating technical discussions with them.
submitted by The_BCH_Boys to btc [link] [comments]

Secure chat proposal

Hi everyone. A friend recommended I pitch my idea for a new cellular network on this subreddit and see what people think.
I call the network WiPhone (no relation to the WiPhone project on Facebook). It features end-to-end encryption similar to WhatsApp but it's fully open source. The idea is to use PGP public keys as a subscriber ID, with the full fingerprint being used as the phone number. The network would use a decentralized system of nodes like Bitcoin.
Each node be a server on the Internet acting as a telephone exchange. A user would start their WiPhone PC or mobile app and it would open a connection to the node. If this is their first time, the app would be requested to send the full PGP public key to the node. After this, or if this isn't the user's first time, the node would send a short random string, such as the current date and time and a random number, to the app which would sign it and send back just the signature. The node would respond with a success code if the challenge-response was successful, and then the person's PGP fingerprint would be added to the node's list of connected users.
Nodes would maintain a list of connected users and the IP addresses of other nodes. If the user wants to call or text someone, their app would tell the node and provide the destination number. The node would search its own list of connected users, and then start working down the list of other nodes it knows about, asking them if they know that number. If no one recognizes it, the user would be notified that the number is not available. Otherwise, the destination number would be pinged. The user on the other end would not see anything yet, because their phone would send out a challenge response of its own to make sure the first person is really calling or texting right now and that a replay attack is not happening. Once the second person's app is satisfied with the challenge response, the user on the other end would be notified of the text or incoming call.
Meanwhile, if they haven't already, each party would receive a copy of the other's public key, which their nodes keep a copy of. To prevent man-in-the-middle attacks, each one would check the other's PGP fingerprint to make sure the key hasn't been replaced by an attacker.
If a user is manually adding a contact, they can search for a name or part of a fingerprint and look through the results before adding the person to their contact list. Since PGP fingerprints are so long, WiPhone contact details could be shared as a QR code or URI.
Phone calls would be sent as 20 millisecond packets. Each one would not only be signed but would also contain a header with a number that increases for each one, to help prevent man-in-the-middle attacks. The idea is to start the call with a random 32- or 64-bit integer and increment it for each packet. Losing a few packets would be fine but a sudden large change or significantly lower numbers (not just a few received out of order) would signal a possible replay attack.
The default encryption mode would be AES, which is already used in PGP. One-time pads could be used if both parties met to exchange them. In the normal mode that uses PGP encryption, it would be possible to save all the encrypted traffic and decrypt some of it when you obtain a private key but this could be prevented by using one-time pads and erasing them as they're used.
No matter what encryption method you choose, all communications and challenge-responses would be protected by a PGP signature. I chose DSA for this because a signature is only 96 bytes. The small signature size is important for phone calls because sending large RSA signatures 50 times per second (since the packets are 20 ms each) would require a lot of bandwidth.
Anyone running a node could only see metadata such as client IP addresses (which could probably be masked with TOR), the numbers that are communicating, when, and how long each call lasts. They could not reveal the contents of any call or text even if they were served a warrant and wanted to comply. Someone attempting to eavesdrop would have to steal the intended victim's private key (maybe by picking their pocket or kidnapping them), and even then they could only decrypt half of every conversation since each user encrypts using the other person's key.
For the normal PGP mode, this means if you arrange a drug deal by phone and get caught, the police could only use your key to decrypt what the other person said to you during the call. They would need to capture the other person to hear what you said. Also, if you live in a country where you have the right to remain silent and not reveal passwords, you could encrypt your private key with a passphrase and then your calls would be safe even if you were caught.
On the other hand, if one-time pads were used, neither side of the call could be decrypted and there's nothing anyone could do about it since the keys would be slowly destroyed as they're used. The police would have to rely on your account of what transpired during the call.
Does this idea sound secure? I know in Signal the key exchange is more complicated so I don't know if this could be hacked.
submitted by DoaJC_Blogger to crypto [link] [comments]

Keychain Accelerates Enterprise Blockchain Adoption with Bitcoin Data Security and Identity Layer

FYI
http://www.keychain.io/2019/09/04/1685/
Uses the Bitcoin blockchain as a public key infrastructure to secure off-chain data.
Capabilities:
Features:
Targeted sectors:
submitted by recursivesalt to u/recursivesalt [link] [comments]

Groestlcoin Christmas Release!

Groestlcoin Dec 2018 Christmas Release Update

As per usual the 3 months has been all hand-on-deck, helping to bring further adoption utilities to Groestlcoin. The markets have been red but as always that doesn't stop the show from going on with regards to the development since the last release update on 24th September. Here's a recap of what has happened so far:

Recap:

What’s New Today?

Groestlcoin on Trezor Model T

As of the latest version of the Trezor Model T firmware, Groestlcoin is now officially supported! The Trezor Model T is the next-generation cryptocurrency hardware wallet, designed to be your universal vault for all of your digital assets. Store and encrypt your coins, passwords and other digital keys with confidence. The Trezor Model T now supports over 500 cryptocurrencies.

Blockbook MainNet & TestNet Block Explorer

Blockbook is an open-source Groestlcoin blockchain explorer with complete REST and websocket APIs that can be used for writing web wallets and other apps that need more advanced blockchain queries than provided by groestlcoind RPC.
Blockbook REST API provides you with a convenient, powerful and simple way to read data from the groestlcoin network and with it, build your own services.

Features:

Blockbook is available via https://blockbook.groestlcoin.org/ Testnet: https://blockbook-test.groestlcoin.org/ Source code: https://github.com/Groestlcoin/blockbook

Edge Wallet

Groestlcoin has been added to the Edge wallet for Android and iOS. Edge wallet is secure, private and intuitive. By including support for ShapeShift, Simplex and Changelly, Edge allows you to seamlessly shift between digital currencies, anywhere with an internet connection.

Features:

Android: https://play.google.com/store/apps/details?id=co.edgesecure.app
iOS: https://itunes.apple.com/us/app/edge-bitcoin-wallet/id1344400091?mt=8
Direct Android: https://edge.app/app

CoinID Wallet

We are excited to announce that Groestlcoin has been added to CoinID! With integrated cold and hot wallet support, and a host of other unique wallet features, CoinID can easily become your go-to wallet for storing Groestlcoin. More details can be found here: https://coinid.org/s/groestlcoin-wallet-overview.pdf

Features

Android: https://play.google.com/store/apps/details?id=org.coinid.wallet.grs
iOS: https://itunes.apple.com/us/app/grs-wallet-for-coinid/id1439638550

Groestlcoin Sentinel - Windows Released

Groestlcoin Sentinel is the easiest and fastest way to track balances of your Groestlcoin addresses.
Features
You can download it using the links below.
Download the Windows Wallet (64 bit) here: https://github.com/Groestlcoin/Groestlcoin-Sentinel-Windows/releases/download/1.0/SentinelSetup_x64.msi
Download the Windows Wallet (32 bit) here: https://github.com/Groestlcoin/Groestlcoin-Sentinel-Windows/releases/download/1.0/SentinelSetup_x86.msi
Source code: https://github.com/Groestlcoin/Groestlcoin-Sentinel-Windows/

Groestlcoin BIP39 Tool 0.3.9 Update

The Groestlcoin BIP39 tool is an open-source web tool for converting BIP39 mnemonic codes to addresses and private keys. This enables the greatest security against third-party wallets potentially disappearing – You’ll still have access to your funds thanks to this tool.
What’s New
Download the Groestlcoin BIP39 tool here: https://github.com/Groestlcoin/bip39/archive/master.zip
Source code: https://github.com/groestlcoin/bip39
Or use hosted version: https://groestlcoin.org/bip39/

Electrum-GRS 3.2.3 Update

Electrum-GRS is a lightweight "thin client" Groestlcoin wallet Windows, MacOS and Linux based on a client-server protocol. Its main advantages over the original Groestlcoin client include support for multi-signature wallets and not requiring the download of the entire block chain.
What’s New

Electrum + Android Version 3.2.3:

Android: https://play.google.com/store/apps/details?id=org.groestlcoin.electrumgrs
Windows & OSX: https://github.com/Groestlcoin/electrum-grs/releases/
Linux:
sudo apt-get install python3-setuptools python3-pyqt5 python3-pip python3-dev libssl-dev sudo pip3 install groestlcoin_hash sudo pip3 install https://github.com/Groestlcoin/electrum-grs/releases/download/v3.2.3/Electrum-grs-3.2.3.tar.gz electrum-grs
GitHub Source server: https://github.com/Groestlcoin/electrumx-grs
Github Source server installer: https://github.com/Groestlcoin/electrumx-grs-installer
Github Source client: https://github.com/Groestlcoin/electrum-grs

Groestlcoin ivendPay Integration

ivendPay and Groestlcoin cryptocurrency have announced the start of integration.
IT company ivendPay, the developer of a universal multicurrency payment module for automatic and retail trade, intends to integrate Groestlcoin cryptocurrency — one of the oldest and the most reputable Bitcoin forks into the payment system. Groestlcoin is characterized by instant transactions with almost zero commission and is optimal for mass retail trade where micropayments are mostly used.
According to Sergey Danilov, founder and CEO of ivendPay, Groestlcoin will become the 11th cryptocurrency integrated into the payment module. The first working vending machines for the sale of coffee, snacks and souvenirs, equipped with ivendPay modules, served the visitors of the CryptoEvent RIW exhibition at VDNKh in Moscow and accepted Bitcoin, Go Byte, Dash, Bitcoin Cash, Ethereum, Ethereum Classic, Zcash, Bitcoin Gold, Dogecoin and Emercoin. ivendPay terminals are designed and patented to accept payments in electronic money, cryptocurrencies and cash when connecting the corresponding cash terminal. Payment for the purchase takes a few seconds, the choice of the payment currency occurs at the time of placing the order on the screen, the payment is made by QR-code through the cryptocurrency wallet on the smartphone.
The interest in equipping vending machines with ivendPay terminals has already been shown by the companies of Malaysia and Israel, where first test networks would be installed. ivendPay compiles a waiting list for vending networks interested in buying terminals and searches for an investor to launch industrial production. According to Sergey Danilov, the universal payment terminal ivendPay for the vending machine will cost about $500. The founder of ivendPay has welcomed the appearance of Groestlcoin among integrated cryptocurrencies, as it is another step towards the realization of the basic idea of digital money - free and cross-border access to goods and services for everybody.
submitted by Yokomoko_Saleen to groestlcoin [link] [comments]

Groestlcoin Release September 2018

Introduction

As always, the past 3 months since 22nd June have been crazy busy. The bears might still be around, but the show must go on and of course has not slowed the Groestlcoin development team in the slightest. Here’s a quick overview of what has already happened since the last release: - Integrated into the bitbns exchange, with the ability to buy Groestlcoin directly with the Indian Rupee. - Groestlcoin Rebrand Vote – Whilst there was much talk and push for a rebrand vote, the overall result was almost unanimously in favour of keeping our unique and conversation-starting name. With just 83 votes to Rebrand, and 2577 votes to No Rebrand. Thank you for all who voted, the funds raised are being used to fund ongoing hosting and development costs. - Integrated into the Cryptobridge exchange. Cryptobridge is a popular decentralised exchange where you always hold the private keys to your funds, only YOU have access to them. - Groestlcoin has been added to SimpleSwap – Groestlcoin can now be swapped with over 100 other cryptocurrencies, without signing up! - Groestlcoin has been added to UnoDax, one of the leading cryptocurrency exchanges in India, with TUSD, BTC and INR trading pairs. - Groestlcoin has been added to SwapLab.cc, where you can buy Groestlcoin using Bitcoin and over 50 other altcoins. Purchasing with VISA/Mastercard is coming VERY SOON. Discussed later: - Groestlcoin has been listed on #3 largest exchange in the world on volume, Huobi Global! More on this to come further on in the announcements. - Groestlcoin has been added to the Guarda Multi-Currency Wallet. - Groestlcoin has been added to Melis Multi-Device, Multi-Account, Multi-Platform, Multi-Signature advanced wallet! Already this list is far more than most other cryptocurrencies have achieved in the past 3 months. But this is just the tip of the iceberg of what has been developed.

What's been Happening?

GRSPay Released

We are so excited for this, that it has it's own separate reddit thread. Head over there now at https://www.reddit.com/groestlcoin/comments/9ikr5m/groestlcoin_releases_grspay/? to see more on this!
https://www.melis.io/assets/logo-navbar-4b6f0d372f15b2446d3fa4c68f346e4fb08ee113941186cee58fd6135f3f8b7d.svg

Melis Wallet

The the most advanced wallet for Bitcoin, Bitcoin Cash, Litecoin and now Groestlcoin.
With Melis you have the complete control of your bitcoins and private keys, you can define spending limits policies and make use of two or more factors authentication. Melis is open source, published on GitHub.

How Melis Works?

You can create as many accounts as you want. An account is a part of your wallet that can be customised to your requirements. You can choose how many co-signers are required to spend funds. The accounts are completely independent and act like separate wallets from each other but can be accessed via the same details. A core feature of Melis is the ability to set a ‘primary’ device. With this you can set an account as ‘Secure’ so it is only viewable (and accessible at all) from the Primary device. You can have a savings account hidden from the outside world whilst also having your ‘spending’ funds available on the go. With Melis you can create a multi-signature account between N people, where up to N signatures are required to sign a transaction, choosing if any of those should be mandatory.
Core Features:
https://guarda.co/assets/images/1PGo4ID.svg?1537791124643

Guarda Wallet

Safer than ever! Desktop Light Wallet - Anonymous and fast!
With Guarda Multi-currency Desktop Light Wallet you don’t need to register. Guarda has no access to your private keys or funds. You can receive, send, store, buy and exchange cryptocurrencies in complete anonymity and safety. All these features are available on Linux, Windows or MacOS. Choose the one that suits you!
More info about Guarda wallet on www.guarda.co
https://holytransaction.com/images/logo.png

Integrated into HolyTransaction

What is HolyTransaction?

HolyTransaction gives users access to the crypto world with a universal cryptocurrency wallet and instant exchange.

Features

For more information, visit Holy Transaction here.
https://www.groestlcoin.org/wp-content/uploads/2018/09/next-grs-groestlcoin.jpg

Integrated into NEXT Wallet

What is NEXT?

NEXT is a modern, next-generation stylish open-source Desktop wallet.

Features

For more information, visit NextWallet here.
https://blockchainfinancial.com/mediaserve2018/09/admin-06143647-bcf_logo_vec_256x256.png

Integrated into Blockchain Financial

What is Blockchain Financial?

Blockchain Financial is a set of web based services for individuals and companies that want to make things happen with the Cryptocurrencies Ecosystem. - For those that don't know anything about cryptocurrencies, we offer tools that will let them receive, send and operate with an assortment of coins. - For those that are already riding the wave, we offer tools that will let them do all those things that they weren't able to do.

Blockchain Financials mission

We're not here to reinvent the wheel. We're here to make it run smoother for you, and we provide some of the most useful services you'll find on the internet, made in a way that is easy to understand and use on a daily basis. In short, we're a bunch of people that claim to be Crypto Evangelists. We strongly believe in cryptocurrencies, and our main promise is to push them up so more people get involved and take all the advantages they offer.

More information from Blockchain Financial

Back in 2014, the world was taken by storm when Facebook approved the first cryptocurrencies tipping apps. The first was for Dogecoin, and the second was for multiple coins.
The project was hosted on whitepuma.net, and persisted for almost two years, built up a massive user community and gave a home to Bitcoin, Litecoin, Dogecoin and dozens of other bitcoin-based altcoins.
After very active months, the tipping hype started to fade away. Then, the developers decided to jump into the next stage: bringing not only tipping, but also mining and a widget that could be embedded on websites to allow everyone to accept payments. Sadly, the work was never completed because the project started to require an unsustainable amount of resources. Then, in a painful decision, a shutdown was announced by December 2015.
A couple of months after whitepuma.net was closed, the source code was released by its creator as Open Source on GitHub. But it wasn't maintained.
Now, some of the original members of the dev and admin teams gathered up with a handful of the WhitePuma's elite users, and decided to make something good with the best pieces of the old source code. That, with fresh new ideas and the power of the BardCanvas engine, synthesized the core of Blockchain Financial.
More info about Blockchain Financial wallet on .
For more information, visit [Blockchain Financial](www.blockchainfinancial.com)
https://www.huobi.com/image/logo.aeb4723.svg

Groestlcoin Listed on Huobi

Who are Huobi?

Huobi was founded in China and is now based in Singapore, with offices in Hong Kong, South Korea, Japan and the North America, currently sitting #3 in volume on Coinmarketcap. Huobi is a great leap forward for our growing presence in Asia and we are very excited to be listed here!
You can find the official Huobi announcement here.

Groestlcoin Core v2.16.3 - Please Update ASAP

A new major Groestlcoin Core version 2.16.3 is now available for download which includes both a Denial of Service component and a critical inflation vulnerability, so it is recommended to upgrade to it if you are running a full Groestlcoin node or a local Groestlcoin Core wallet.
v2.16.3 is now the official release version of Groestlcoin Core. This is a new major version release with a very important security updates. It is recommended to upgrade to this version as soon as possible. Please stop running versions of Groestlcoin Core affected by CVE-2018-17144 ASAP: These are 2.13.3 and 2.16.0.
As a result in this, all exchanges and services have been asked to upgrade to this version, so please be patient if wallets go in to maintenance mode on these services.

What's new in version v2.16.3?

This is a major release of Groestlcoin Core fixing a Denial of Service component and a critical inflation vulnerability (https://nvd.nist.gov/vuln/detail/CVE-2018-17144) exploitable by miners that has been discovered in Groestlcoin Core version 2.13.3 and 2.16.0. It is recommended to upgrade to 2.16.3 as soon as possible. If you only occasionally run Groestlcoin Core, then it's not necessary to run out and upgrade it right this second. However, you should upgrade it before you next run it. If you know anyone who is running an older version, tell them to upgrade it ASAP. Stored funds are not at risk, and never were at risk. At this time we believe over half of the Groestlcoin hashrate has upgraded to patched nodes. We are unaware of any attempts to exploit this vulnerability. However, it still remains critical that affected users upgrade and apply the latest patches to ensure no possibility of large reorganizations, mining of invalid blocks, or acceptance of invalid transactions occurs.

The Technicals

In Groestlcoin Core 2.13.3, an optimization was added (Bitcoin Core PR #9049) which avoided a costly check during initial pre-relay block validation that multiple inputs within a single transaction did not spend the same input twice which was added in 2012 (Bitcoin Core PR #443). While the UTXO-updating logic has sufficient knowledge to check that such a condition is not violated in 2.13.3 it only did so in a sanity check assertion and not with full error handling (it did, however, fully handle this case twice in prior to 2.1.0.6). Thus, in Groestlcoin Core 2.13.3, any attempts to double-spend a transaction output within a single transaction inside of a block will result in an assertion failure and a crash, as was originally reported. In Groestlcoin Core 2.16.0, as a part of a larger redesign to simplify unspent transaction output tracking and correct a resource exhaustion attack the assertion was changed subtly. Instead of asserting that the output being marked spent was previously unspent, it only asserts that it exists. Thus, in Groestlcoin Core 2.16.0, any attempts to double-spend a transaction output within a single transaction inside of a block where the output being spent was created in the same block, the same assertion failure will occur. However, if the output being double-spent was created in a previous block, an entry will still remain in the CCoin map with the DIRTY flag set and having been marked as spent, resulting in no such assertion. This could allow a miner to inflate the supply of Groestlcoin as they would be then able to claim the value being spent twice.
Groestlcoin would like to publicly thank Reddit user u/Awemany for finding CVE-2018-17144 and reporting it (https://lists.linuxfoundation.org/pipermail/bitcoin-core-dev/2018-Septembe000064.html). You deserve gratitude and appreciation from cryptoworld, and you have ours. If you want to support him for his work, please consider donating to him on his bitcoin cash address: bitcoincash:qr5yuq3q40u7mxwqz6xvamkfj8tg45wyus7fhqzug5
http://i.imgur.com/3YhyNZK.png

Groestlcoin Electrum-GRS 3.2.2 - Ledger & Trezor Edition

What is Electrum-GRS?
Electrum-GRS is a lightweight "thin client" groestlcoin wallet Windows, MacOS and Linux based on a client-server protocol. Its main advantages over the original Groestlcoin client include support for multi-signature wallets and not requiring the download of the entire block chain.

Changes:

http://i.imgur.com/3YhyNZK.png

Electrum-GRS Mobile Android

What is Electrum-GRS Mobile?

Electrum-grs is a lightweight "thin client" groestlcoin wallet Android based on a client-server protocol. Its main advantages over the original Groestlcoin client include support for multi-signature wallets and not requiring the download of the entire block chain.

Changes

Groestlcoin EasyVanity Released

Groestlcoin EasyVanity is a Windows app is built from the ground-up in C# and makes it easier than ever before to create your very own bespoke Groestlcoin address(es), even whilst not connected to the internet! You can even generate multiple keys with the same prefix and leave it on overnight whilst your CPU or GPU collects and stores these addresses locally.
If you're tired of the random, cryptic addresses generated by regular groestlcoin clients, then Groestlcoin EasyVanity is the right choice for you to create a more personalized address.

Features

• Ability to continue finding keys after first one is found • Includes warning on startup if connected to the internet • Ability to output keys to a text file (And shows button to open that directory) • Ability to make your match case sensitive (Where possible) • Show and hide the private key with a simple toggle switch, and copy the private key straight to your clipboard • Show full output of commands • Includes statistics whilst the application is running • Ability to choose between Processor (CPU) and Graphics Card (GPU) • Automatically detects 32 or 64 bit systems • Features both a Light and Dark Material Design inspired Themes • EasyVanity's search is probabilistic, and the amount of time required to find a given pattern depends on how complex the pattern is, the speed of your computer, and whether you get lucky. • EasyVanity includes components to perform address searching on your CPU (vanitygen) and your OpenCL-compatible GPU (oclvanitygen). Both can be built from source, and both are included in the Windows binary package. • Prefixes are exact strings that must appear at the beginning of the address. When searching for prefixes, Easyvanity will ensure that the prefix is possible, and will provide a difficulty estimate. • The percentage displayed just shows how probable it is that a match would be found in the session so far. If it finds your address with 5% on the display, you are extremely lucky. If it finds your address with 92% on the display, you are unlucky. If you stop EasyVanity with 90% on the display, restart it, and it finds your address with 2% on the display, your first session was unlucky, but your second session was lucky. • EasyVanity uses the OpenSSL random number generator. This is the same RNG used by groestlcoin and a good number of HTTPS servers. It is regarded as well-scrutinized. Guessing the private key of an address found by EasyVanity will be no easier than guessing a private key created by groestlcoin itself. • To speed up address generation, EasyVanity uses the RNG to choose a private key, and literally increments the private key in a loop searching for a match. As long as the starting point is not disclosed, if a match is found, the private key will not be any easier to guess than if every private key tested were taken from the RNG. EasyVanity will also reload the private key from the RNG after 10,000,000 unsuccessful searches (100M for oclvanitygen), or when a match is found and multiple patterns are being searched for. • Free software - MIT. Anyone can audit the code. • Written in C# - The code is short, and easy to review.

Groestlcoin Sentinel (Android & Blackberry) – Mainnet + Testnet

What is Sentinel?

Groestlcoin Sentinel is the easiest and fastest way to track/receive/watch payments in your offline Groestlcoin Wallets. Groestlcoin Sentinel is compatible with any standard Groestlcoin address, BIP44 XPUB (Extended Public Key) BIP49 YPUB and BIP84 ZPUB
Groestlcoin Sentinel is a great solution for anyone who wants the convenience and utility of a hot wallet for receiving payments directly into their cold storage (or hardware wallets). Sentinel accepts XPUB's, YPUB'S, ZPUB's and individual Groestlcoin address. Once added you will be able to view balances, view transactions, and (in the case of XPUB's, YPUB's and ZPUB's) deterministically generate addresses for that particular wallet.

What's New?

The P2SH paperwallet supports creating P2SH paperwallets in bulk, keypair generation with QR codes and sweeping tool. Groestlcoin believes strongly in privacy, the live version does not collect and store IP or transaction data.
Changes
Features
The BECH32 paperwallet supports creating BECH32 paperwallets in bulk, keypair generation with QR codes and sweeping tool. Groestlcoin believes strongly in privacy, the live version does not collect and store IP or transaction data.
Features
![WebWallet](https://i.imgur.com/Z2oj7bj.png)

Groestlcoin Web Wallet Update 1.4

What is Groestlcoin Web Wallet?
Groestlcoin Webwallet is an open source, multisignature, HD Wallet and more! Webwallet is a a open source browser based Groestlcoin webwallet.
Webwallet is a playground for Groestlcoin in javascript to experiment with. It supports multisig, OP_HODL, RBF and many more. Groestlcoin believes strongly in privacy, the live version does not collect and store IP or transaction data.
Changes:
submitted by Yokomoko_Saleen to groestlcoin [link] [comments]

Merged Mining: Analysis of Effects and Implications

Date: 2017-08-24
Author(s): Alexei Zamyatin, Edgar Weippl

Link to Paper


Abstract
Merged mining refers to the concept of mining more than one cryptocurrency without necessitating additional proof-of-work effort. Merged mining was introduced in 2011 as a boostrapping mechanism for new cryptocurrencies and countermeasures against the fragmentation of mining power across competing systems. Although merged mining has already been adopted by a number of cryptocurrencies, to this date little is known about the effects and implications.
In this thesis, we shed light on this topic area by performing a comprehensive analysis of merged mining in practice. As part of this analysis, we present a block attribution scheme for mining pools to assist in the evaluation of mining centralization. Our findings disclose that mining pools in merge-mined cryptocurrencies have operated at the edge of, and even beyond, the security guarantees offered by the underlying Nakamoto consensus for extended periods. We discuss the implications and security considerations for these cryptocurrencies and the mining ecosystem as a whole, and link our findings to the intended effects of merged mining.

Bibliography
[1] Coinmarketcap. http://coinmarketcap.com/. Accessed 2017-09-28.
[2] P2pool. http://p2pool.org/. Accessed: 2017-05-10.
[3] M. Ali, J. Nelson, R. Shea, and M. J. Freedman. Blockstack: Design and implementation of a global naming system with blockchains. http://www.the-blockchain.com/docs/BlockstackDesignandImplementationofaGlobalNamingSystem.pdf, 2016. Accessed: 2016-03-29.
[4] G. Andersen. Comment in "faster blocks vs bigger blocks". https://bitcointalk.org/index.php?topic=673415.msg7658481#msg7658481, 2014. Accessed: 2017-05-10.
[5] G. Andersen. [bitcoin-dev] weak block thoughts... https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-Septembe011157.html, 2015. Accessed: 2017-05-10.
[6] L. Anderson, R. Holz, A. Ponomarev, P. Rimba, and I. Weber. New kids on the block: an analysis of modern blockchains. http://arxiv.org/pdf/1606.06530.pdf, 2016. Accessed: 2016-07-04.
[7] E. Androulaki, S. Capkun, and G. O. Karame. Two bitcoins at the price of one? double-spending attacks on fast payments in bitcoin. In CCS, 2012.
[8] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell, A. Miller, A. Poelstra, J. Timón, and P. Wuille. Enabling blockchain innovations with pegged sidechains. http://newspaper23.com/ripped/2014/11/http-_____-___-_www___-blockstream___-com__-_sidechains.pdf, 2014. Accessed: 2017-09-28.
[9] A. Back et al. Hashcash - a denial of service counter-measure. http://www.hashcash.org/papers/hashcash.pdf, 2002. Accessed: 2017-09-28.
[10] S. Barber, X. Boyen, E. Shi, and E. Uzun. Bitter to better - how to make bitcoin a better currency. In Financial cryptography and data security, pages 399–414. Springer, 2012.
[11] J. Becker, D. Breuker, T. Heide, J. Holler, H. P. Rauer, and R. Böhme. Can we afford integrity by proof-of-work? scenarios inspired by the bitcoin currency. In WEIS. Springer, 2012.
[12] I. Bentov, R. Pass, and E. Shi. Snow white: Provably secure proofs of stake. https://eprint.iacr.org/2016/919.pdf, 2016. Accessed: 2017-09-28.
[13] Bitcoin Community. Bitcoin developer guide- transaction data. https://bitcoin.org/en/developer-guide#term-merkle-tree. Accessed: 2017-06-05.
[14] Bitcoin Community. Bitcoin protocol documentation - merkle trees. https://en.bitcoin.it/wiki/Protocol_documentation#Merkle_Trees. Accessed: 2017-06-05.
[15] Bitcoin community. Bitcoin protocol rules. https://en.bitcoin.it/wiki/Protocol_rules. Accessed: 2017-08-22.
[16] V. Buterin. Chain interoperability. Technical report, Tech. rep. 1. R3CEV, 2016.
[17] W. Dai. bmoney. http://www.weidai.com/bmoney.txt, 1998. Accessed: 2017-09-28.
[18] C. Decker and R. Wattenhofer. Information propagation in the bitcoin network. In Peer-to-Peer Computing (P2P), 2013 IEEE Thirteenth International Conference on, pages 1–10. IEEE, 2013.
[19] C. Decker and R. Wattenhofer. Bitcoin transaction malleability and mtgox. In Computer Security-ESORICS 2014, pages 313–326. Springer, 2014.
[20] Dogecoin community. Dogecoin reference implementation. https://github.com/dogecoin/
[27] A. Gervais, G. Karame, S. Capkun, and V. Capkun. Is bitcoin a decentralized currency? volume 12, pages 54–60, 2014.
[28] A. Gervais, G. O. Karame, K. Wüst, V. Glykantzis, H. Ritzdorf, and S. Capkun. On the security and performance of proof of work blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, pages 3–16. ACM, 2016.
[29] I. Giechaskiel, C. Cremers, and K. B. Rasmussen. On bitcoin security in the presence of broken cryptographic primitives. In European Symposium on Research in Computer Security (ESORICS), September 2016.
[30] J. Göbel, H. P. Keeler, A. E. Krzesinski, and P. G. Taylor. Bitcoin blockchain dynamics: The selfish-mine strategy in the presence of propagation delay. Performance Evaluation, 104:23–41, 2016.
[31] E. Heilman, A. Kendler, A. Zohar, and S. Goldberg. Eclipse attacks on bitcoin’s peer-to-peer network. In 24th USENIX Security Symposium (USENIX Security 15), pages 129–144, 2015.
[32] Huntercoin developers. Huntercoin reference implementation. https://github.com/chronokings/huntercoin. Accessed: 2017-06-05.
[33] B. Jakobsson and A. Juels. Proofs of work and bread pudding protocols, Apr. 8 2008. US Patent 7,356,696; Accessed: 2017-06-05.
[34] M. Jakobsson and A. Juels. Proofs of work and bread pudding protocols. In Secure Information Networks, pages 258–272. Springer, 1999.
[35] A. Judmayer, N. Stifter, K. Krombholz, and E. Weippl. Blocks and chains: Introduction to bitcoin, cryptocurrencies, and their consensus mechanisms. Synthesis Lectures on Information Security, Privacy, & Trust, 9(1):1–123, 2017.
[36] A. Juels and J. G. Brainard. Client puzzles: A cryptographic countermeasure against connection depletion attacks. In NDSS, volume 99, pages 151–165, 1999.
[37] A. Juels and B. S. Kaliski Jr. Pors: Proofs of retrievability for large files. In Proceedings of the 14th ACM conference on Computer and communications security, pages 584–597. Acm, 2007.
[38] H. Kalodner, M. Carlsten, P. Ellenbogen, J. Bonneau, and A. Narayanan. An empirical study of namecoin and lessons for decentralized namespace design. In WEIS, 2015.
[39] G. O. Karame, E. Androulaki, and S. Capkun. Double-spending fast payments in bitcoin. In Proceedings of the 2012 ACM conference on Computer and communications security, pages 906–917. ACM, 2012.
[40] G. O. Karame, E. Androulaki, M. Roeschlin, A. Gervais, and S. Čapkun. Misbehavior in bitcoin: A study of double-spending and accountability. volume 18, page 2. ACM, 2015.
[41] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain protocol. In Annual International Cryptology Conference, pages 357–388. Springer, 2017.
[42] S. King. Primecoin: Cryptocurrency with prime number proof-of-work. July 7th, 2013.
[43] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier, J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, et al. Jupyter notebooks-a publishing format for reproducible computational workflows. In ELPUB, pages 87–90, 2016.
[44] Lerner, Sergio D. Rootstock plattform. http://www.the-blockchain.com/docs/Rootstock-WhitePaper-Overview.pdf. Accessed: 2017-06-05.
[45] Y. Lewenberg, Y. Bachrach, Y. Sompolinsky, A. Zohar, and J. S. Rosenschein. Bitcoin mining pools: A cooperative game theoretic analysis. In Proceedings of the 2015 International Conference on Autonomous Agents and Multiagent Systems, pages 919–927. International Foundation for Autonomous Agents and Multiagent Systems, 2015.
[46] Litecoin community. Litecoin reference implementation. https://github.com/litecoin-project/litecoin. Accessed: 2017-09-28.
[47] I. Maven. Apache maven project, 2011.
[48] G. Maxwell. Comment in "[bitcoin-dev] weak block thoughts...". https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2015-Septembe011198.html, 2016. Accessed: 2017-05-10.
[49] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker, and S. Savage. A fistful of bitcoins: characterizing payments among men with no names. In Proceedings of the 2013 conference on Internet measurement conference, pages 127–140. ACM, 2013.
[50] S. Micali. Algorand: The efficient and democratic ledger. http://arxiv.org/abs/1607.01341, 2016. Accessed: 2017-02-09.
[51] A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Permacoin: Repurposing bitcoin work for data preservation. In Security and Privacy (SP), 2014 IEEE Symposium on, pages 475–490. IEEE, 2014.
[52] A. Miller, A. Kosba, J. Katz, and E. Shi. Nonoutsourceable scratch-off puzzles to discourage bitcoin mining coalitions. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages 680–691. ACM, 2015.
[53] B. Momjian. PostgreSQL: introduction and concepts, volume 192. Addison-Wesley New York, 2001.
[54] Myriad core developers. Myriadcoin reference implementation. https://github.com/myriadcoin/myriadcoin. Accessed: 2017-06-05.
[55] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/bitcoin.pdf, Dec 2008. Accessed: 2017-09-28.
[56] S. Nakamoto. Merged mining specification. https://en.bitcoin.it/wiki/Merged_mining_specification, Apr 2011. Accessed: 2017-09-28.
[57] Namecoin Community. Merged mining. https://github.com/namecoin/wiki/blob/masteMerged-Mining.mediawiki#Goal_of_this_namecoin_change. Accessed: 2017-08-20.
[58] Namecoin community. Namecoin reference implementation. https://github.com/namecoin/namecoin. Accessed: 2017-09-28.
[59] A. Narayanan, J. Bonneau, E. Felten, A. Miller, and S. Goldfeder. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction. Princeton University Press, 2016.
[60] K. Nayak, S. Kumar, A. Miller, and E. Shi. Stubborn mining: Generalizing selfish mining and combining with an eclipse attack. In 1st IEEE European Symposium on Security and Privacy, 2016. IEEE, 2016.
[61] K. J. O’Dwyer and D. Malone. Bitcoin mining and its energy footprint. 2014.
[62] R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous networks. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pages 643–673. Springer, 2017.
[63] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures. Journal of cryptology, 13(3):361–396, 2000.
[64] Pseudonymous("TierNolan"). Decoupling transactions and pow. https://bitcointalk.org/index.php?topic=179598.0, 2013. Accessed: 2017-05-10.
[65] P. R. Rizun. Subchains: A technique to scale bitcoin and improve the user experience. Ledger, 1:38–52, 2016.
[66] K. Rosenbaum. Weak blocks - the good and the bad. http://popeller.io/index.php/2016/01/19/weak-blocks-the-good-and-the-bad/, 2016. Accessed: 2017-05-10.
[67] K. Rosenbaum and R. Russell. Iblt and weak block propagation performance. Scaling Bitcoin Hong Kong (6 December 2015), 2015.
[68] M. Rosenfeld. Analysis of bitcoin pooled mining reward systems. arXiv preprint arXiv:1112.4980, 2011.
[69] M. Rosenfeld. Analysis of hashrate-based double spending. http://arxiv.org/abs/1402.2009, 2014. Accessed: 2016-03-09.
[70] R. Russel. Weak block simulator for bitcoin. https://github.com/rustyrussell/weak-blocks, 2014. Accessed: 2017-05-10.
[71] A. Sapirshtein, Y. Sompolinsky, and A. Zohar. Optimal selfish mining strategies in bitcoin. In International Conference on Financial Cryptography and Data Security, pages 515–532. Springer, 2016.
[72] Sathoshi Nakamoto. Comment in "bitdns and generalizing bitcoin" bitcointalk thread. https://bitcointalk.org/index.php?topic=1790.msg28696#msg28696. Accessed: 2017-06-05.
[73] O. Schrijvers, J. Bonneau, D. Boneh, and T. Roughgarden. Incentive compatibility of bitcoin mining pool reward functions. In FC ’16: Proceedings of the the 20th International Conference on Financial Cryptography, February 2016.
[74] B. Sengupta, S. Bag, S. Ruj, and K. Sakurai. Retricoin: Bitcoin based on compact proofs of retrievability. In Proceedings of the 17th International Conference on Distributed Computing and Networking, page 14. ACM, 2016.
[75] N. Szabo. Bit gold. http://unenumerated.blogspot.co.at/2005/12/bit-gold.html, 2005. Accessed: 2017-09-28.
[76] M. B. Taylor. Bitcoin and the age of bespoke silicon. In Proceedings of the 2013 International Conference on Compilers, Architectures and Synthesis for Embedded Systems, page 16. IEEE Press, 2013.
[77] Unitus developers. Unitus reference implementation. https://github.com/unitusdev/unitus. Accessed: 2017-08-22.
[78] M. Vukolić. The quest for scalable blockchain fabric: Proof-of-work vs. bft replication. In International Workshop on Open Problems in Network Security, pages 112–125. Springer, 2015.
[79] P. Webb, D. Syer, J. Long, S. Nicoll, R. Winch, A. Wilkinson, M. Overdijk, C. Dupuis, and S. Deleuze. Spring boot reference guide. Technical report, 2013-2016.
[80] A. Zamyatin. Name-squatting in namecoin. (unpublished BSc thesis, Vienna University of Technology), 2015.
submitted by dj-gutz to myrXiv [link] [comments]

Bitcoin Cash Network Upgrade, Binance Hack Controversy ... Easiest Way To Receive or Spend Bitcoin, Litecoin, Dogecoin and SwiftCash with Proof of Keys The Anonymity of Bitcoin – Zero-Knowledge Proof and Ring Signature Technologies – Zap! Lightning Network Wallet Setup Tutorial (Windows) aantonop - YouTube

The selected value must not be orphaned so it may be useful to set the value two blocks back from the tip. Testnet should be set some tens of thousands back from the tip due to reorgs there. This update should be reviewed with a reindex-chainstate with assumevalid=0 to catch any defect that causes ... Network-wide DoS using malleable signatures in alerts. Private Release Date: 24-AGO-2012 Public Release Date: 01-MAR-2013. Systems Affected. Satoshi Bitcoin Client (Bitcoin-Qt, bitcoind) All Bitcoin clients that mimic the behavior related to the alert system of Satoshi client versions prior 0.6.3; Affected Versions. Bitcoin version 0.6.3 released 2012-06-25; Bitcoin version 0.6.2 released 2012 ... Bitcoin Core is a community-driven free software project, ... Verify release signatures Download torrent Source code Show version history. Bitcoin Core Release Signing Keys v0.8.6 - 0.9.2.1 v0.9.3 - 0.10.2 v0.11.0 + Or choose your operating system. Windows exe - zip. Mac OS X dmg - tar.gz. Linux (tgz) 64 bit. ARM Linux 64 bit - 32 bit. Linux (Snap Store) Support Bitcoin.org: Donate ... Verify release signatures Download torrent Source code Show version history. Bitcoin Core Release Signing Keys v0.11.0+ 01EA5486DE18A882D4C2684590C8019E36C2E964 ... On Windows, do not forget to uninstall all earlier versions of the Bitcoin client first, especially if you are switching to the 64-bit version. Windows 64-bit installer. New in 0.9.0 is the Windows 64-bit version of the client. There have been frequent reports of users running out of virtual memory on 32-bit systems during the initial sync. Because of this it is recommended to install the 64 ...

[index] [32716] [2539] [7996] [47931] [11129] [8265] [19475] [48905] [35475] [31643]

Bitcoin Cash Network Upgrade, Binance Hack Controversy ...

easyminer is a bitcoin mining software optimized for x86 x86-64 and arm architectures for bitcoin and litecoin clients. bitcoin mining software mac. 🤑🏆 best bitcoin mining software of 2019 ... Bitcoin is NEW, so it might be a little intimidating, but bitcoin is also really easy to use once get setup. So let's jump in. Your bitcoin wallet is (unsurprisingly) where you keep your bitcoin ... This video is unavailable. Watch Queue Queue The Anonymity of Bitcoin – Zero-Knowledge Proof and Ring Signature Technologies – @ Kakao Bank, April 19, 2018. At Zuman, we're experts in bringing mass customization to HR processes of payroll, benefits and talent management and by doing so we found ways to appeal to different workforce audiences. Payday ...

#